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Abstract
The nonlocal weighted density approximation (WDA) is compared with the
local density approximation (LDA) and generalized gradient approximation
(GGA) for a broad range of inhomogeneous electron gas densities that
are confined in three dimensions (uniform confinement) and along just one
dimension (non-uniform confinement), using a model external potential. All
three functionals display similar properties in the uniformly confined case;
however LDA and GGA energies diverge with respect to the WDA in the non-
uniform strongly confined case. This is caused by the strong anisotropy in the
XC hole, demonstrated by the WDA.

1. Introduction

Developing improved exchange–correlation (XC) approximations in Kohn–Sham density
functional theory (KS-DFT) [1, 2] is an important area of research in quantum chemistry and
condensed matter physics. One method that has received significant interest in recent years
is the generalized gradient approximation (GGA) [3, 4], which builds upon the local density
approximation (LDA) by including semilocal information,namely the reduced density gradient
s = |∇n(r)|/[2kFn(r)]. Since the GGA is not a unique functional, much effort has been
invested in developing optimal forms [5]. These range from first-principles derivations [6, 7]—
obtained by enforcing exact conditions on the XC hole—to semi-empirical forms that are fitted
to atomic and molecular data [8, 9]. As a result of this development GGAs now improve upon
the LDA in several respects, and have largely become the standard XC approximation in
KS-DFT calculations.

There also exist fully nonlocal approximations such as the weighted density approximation
(WDA) [10, 11] and the average density approximation (ADA) [12] in which the XC energy is
written as a double integral involving the density. Unfortunately these functionals have received
less attention because they incur greater computational expense than the GGA. Consequently,
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promising forms such as the WDA are relatively underdeveloped despite the fact that they
possess several important features [13].

Whereas self-consistent properties of solid systems have been reported previously for the
WDA [14], such calculations alone provide little insight at present due to the inconsistent
treatment of exchange and correlation for the core electrons. It is known that using a different
XC scheme for the core electrons can mask the true performance of the XC functional being
tested [15]. The aim of this work is therefore to improve the understanding of the WDA
by making direct comparisons with the LDA and the GGA for the inhomogeneous electron
gas—a system that makes no reference to ionic cores or pseudopotentials. We investigate
a wide range of density environments that vary from the weakly perturbed through to the
strongly anisotropic, which are generated using a model potential that we used in a previous
study [16]. In this way, the degree of anisotropy can be easily controlled. Total XC energies,
EXC, energy densities, eXC, potentials, vXC, and hole densities, nXC(r, r′), are calculated for
the electron gas confined in three directions and along just one direction. We find that the
three types of functional exhibit fairly similar properties in the uniformly confined 3D case,
even when the density is strongly localized. However, in the 1D case, the properties of the
LDA and GGA functionals significantly depart from those of the WDA. The XC energies from
the (semi)local functionals diverge relative to the WDA, confirming previous work by Kim
et al [17] which examined the ADA in model quasi-2D systems. The WDA XC potentials are
also shallower and decay substantially more slowly than in the LDA and GGA. We show that
these divergences are caused by the highly anisotropic nature of the XC hole which cannot be
modelled with a (semi)local functional. This conclusion was drawn by Kim et al although it
was not demonstrated.

In section 2 we give a brief description of the density functionals and their properties. The
model potential used to obtain the densities is given in section 3. Results and conclusions are
given in sections 4 and 5 respectively.

2. Details of the exchange–correlation functionals

The total spin-unpolarized XC energy EXC in KS-DFT can be written generally as

EXC[n(r)] =
∫

eXC[n(r)] dr, (1)

where we define eXC as the XC energy density. The exact expression for eXC is given in terms
of the XC hole density nXC(r, r′), that is the depletion of density surrounding every electron
an interacting system:

eXC[n(r)] = 1

2
n(r)

∫
nXC(r, r′)
|r − r′| dr′. (2)

For an electron situated at the point r, the XC hole density at all other points r′ in the system
is given by

nXC(r, r′) = n(r′)[gXC(r, r′) − 1] (3)

where gXC(r, r′) is the coupling constant integral over the pair correlation function, gλ(r, r′),
with the overall density kept constant, that is

gXC(r, r′) =
∫ 1

0
[gλ(r, r′) − 1] dλ. (4)

The XC hole obeys a normalization condition known as the XC sum rule, which preserves the
charge neutrality of the electron–hole system:∫

nXC(r, r′) dr′ = −1. (5)
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The XC functionals used here are essentially direct approximations for the exact XC hole,
which is unknown for inhomogeneous systems. The LDA makes two assumptions—(i) that
the XC hole depends on the density at the site of the electron n(r), not n(r′) as in (3); (ii) that
the pair correlation function is modelled by the known homogeneous electron gas function
ghom

XC . So, in the LDA the exact XC hole is approximated by

nXC(r, r′) ≈ n(r)(ghom
XC [|r − r′|; n(r)] − 1). (6)

Perdew and Wang [18] have devised an analytic representation of ghom
XC which we use in this

work to generate the LDA XC holes. Since the LDA depends on the local density, relation (2)
can be written simply as

eLDA
XC [n(r)] = n(r)εhom

XC [n(r)] (7)

where εhom
XC [n(r)] can be decomposed into an exchange term εhom

X [n(r)] =
−3[3π2n(r)]1/3/(4π), and a correlation term εhom

C [n(r)] which has been determined by fitting
analytic parametrizations [19] to accurate data from quantum Monte Carlo simulations of the
homogeneous electron gas [20]. The LDA XC potential is obtained in the usual manner by
functional differentiation of the total energy expression:

vLDA
XC (r) = ∂eLDA

XC (r)
∂n(r)

. (8)

A natural way to extend beyond the simple LDA is to include density gradient information.
The first step along this path was made by Hohenberg, Kohn and Sham [1, 2] who proposed the
generalized expansion approximation (GEA). The GEA is a second-order gradient expansion
of the XC energy in which the LDA is the first-order term, and the second-order quantity
involves contributions from |∇n(r)|2. However, the GEA leads to very unphysical results that
have been attributed to the violation of the XC sum rule (5) and the negativity constraint on
the exchange hole:

nX(r, r′) � 0 (9)

which is another important exact condition. The GGA was constructed in order to rectify
these problems by sharply terminating the GEA XC hole in real space [21, 22], so as to satisfy
relations (5) and (9). The GGA XC energy can be written as a modification of the LDA with
an enhancement factor FGGA

XC [rs, s] that contains the gradient information:

eGGA
XC [n(r)] = eLDA

XC [n(r)]FGGA
XC [rs, s] (10)

where rs = [4/3πn(r)]1/3 is the Wigner–Seitz radius. The GGA XC potential can be evaluated
using the expression

vGGA
XC (r) = ∂eGGA

XC (r)
∂n(r)

− ∇ · ∂eGGA
XC (r)

∂∇n(r)
. (11)

Unfortunately an explicit local XC hole like that for the LDA in relation (6) cannot be obtained
within the GGA. System and spherical averaged XC holes can be obtained in the GGA [23];
however, this procedure effectively smooths out the nonlocalities in the true XC hole, which
become a dominant factor in strongly inhomogeneous systems, like the ones studied here.
There is no definition of a local hole in the GGA and so it is not possible to compare GGA
energy densities, as it is possible to add a quantity to (10) that modifies eGGA

XC locally but leaves
EGGA

XC unchanged. Such a quantity could take the form of the divergence of a vector field that
integrates to zero. Consequently we will calculate total XC energies and potentials using a
popular non-empirical GGA known as PBE [7].
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Whereas the GGA is based upon the LDA, the WDA derives from the exact eXC by making
the analytic approximation [24] [g(r, r′) − 1] ≈ GWDA

XC [|r − r′|; ñ(r)], so that equation (2)
becomes

eWDA
XC [n(r)] = 1

2
n(r)

∫
n(r′)

GWDA
XC [|r − r′|; ñ(r)]

|r − r′| dr′, (12)

where the weighted density parameter, ñ(r), is a nonlocal quantity fixed at every point in space
by the XC sum rule (5). We examined a range of functions for GWDA

XC [|r − r′|; ñ(r)] in a
previous study [13] and found that a particularly effective form is that of a simple Gaussian:

GWDA
XC [|r − r′|; ñ(r)] = α[ñ(r)]e−β(ñ)|r−r′|2 . (13)

Consequently we will adopt this function here. The parameters α(ñ) and β(ñ) are obtained
by fulfilling equations (2) and (5) for a homogeneous electron gas of density n = n(r). The
WDA XC energy density eWDA

XC and XC hole density, nWDA
XC (r, r′) = n(r′)GWDA

XC , are uniquely
defined and will be compared with those of the LDA.

Although we do not generate self-consistent densities with the WDA, we will compare the
XC potentials for all three functionals evaluated using LDA densities. The WDA XC potential
is given by

vWDA
XC (r) = εXC(r) +

1

2

∫
n(r′)

GWDA
XC [|r − r′|; ñ(r′)]

|r − r′| dr′

+
1

2

∫
dr′′

∫
n(r′)n(r′′)
|r′ − r′′|

δGWDA
XC [|r′ − r′′|; ñ(r′) ]

δn(r)
dr′. (14)

It is again clear that the WDA is very different from its (semi)local counterparts for the XC
potential. A notable feature of this XC potential is that it decays as −1/(2r) at large distance
from an isolated density distribution, compared with the exact −1/r result. However, an
exception to this is for atomic hydrogen and helium whereby the WDA spin-dependent potential
decays in the same way as the exact potential.

We have implemented the WDA within a periodic code [25] since the real-space integral
equations can be most effectively computed in reciprocal space (by exploiting the convolution
theorem) and efficiently transformed using fast Fourier transform algorithms. The details of
the implementation are described in [13].

3. The model system

The electron gas densities are generated self-consistently using KS-DFT with the single-particle
Hamiltonian

H = − 1
2 ∇2 + vext(r) + vH(r) + vLDA

XC (r), (15)

where the first term is the kinetic energy and vH(r) and vXC(r) are the Hartree and LDA
exchange–correlation potentials respectively. The external potential vext(r) is modelled by

vext(r) = v0 cos

[
2π

a0
(qx x)

]
cos

[
2π

a0
(qy y)

]
cos

[
2π

a0
(qzz)

]
, (16)

where a0 is the unit cell parameter. This allows a simple way of controlling the density
inhomogeneity through the choice of wavevector components qx,y,z and amplitude v0. In
this study, we analyse the effect of applying one period of the cosine potential in three
dimensions, where qx,y,z = (1, 1, 1), and in just one dimension, where qx,y,z = (1, 0, 0).
This yields densities with a single maximum along the length of a unit cell in either one
or three directions, which we refer to as non-uniform and uniform confinement respectively.
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(a) (b)

Figure 1. Uniformly confined densities shown in a plane taken through the centre of the confining
potential with v0 = vmax

0 , for (a) the rs = 1.51a0 and (b) rs = 4.31a0 systems.

Table 1. The total exchange–correlation energy EWDA
XC /N , and the difference relative to the LDA

and the GGA for the uniformly confined system with rs = 1.51a0.

vq/ε0
F EWDA

XC /N �ELDA
XC /N �EGGA

XC /N

1.4 −0.3660 −0.0032 (−0.8%) −0.0034 (−0.9%)

2.7 −0.4209 −0.0005 (−0.1%) −0.0024 (−0.6%)

13 −0.6898 +0.0053 (+0.8%) −0.0063 (−0.7%)

41 −0.9425 +0.0071 (+0.8%) −0.0061 (−0.7%)

274 −1.0362 +0.0099 (+0.9%) −0.0056 (−0.5%)

The inhomogeneity in the system (which we characterize by the full width at half-maximum
(FWHM)) is therefore determined by the amplitude v0. A large value of v0 on the scale of
the Fermi energy ε0 = (k0

F)
2/2, where k0

F = (3/4πr3
s ) is the Fermi wavevector, gives rise to

a narrow density profile and therefore a small FWHM. In each case we consider v0 increased
up to some maximum value vmax

0 (corresponding to the most strongly inhomogeneous regime)
such that any further increases in v0 yield negligible changes in the self-consistent density.

The 1D version of this potential was employed in a previous study by Nekovee et al [26]
using the variational Monte Carlo (VMC) method. Interestingly, they found that differences
between the LDA and the VMC XC energy densities closely followed the Laplacian of the
corresponding density ∇2n(r), in magnitude, shape and sign. In subsequent work [16] we
performed similar calculations with the WDA and found that XC energy differences with the
LDA exhibited the same link with ∇2n(r), in good agreement with the VMC findings. We
will investigate this property for a broader range of density inhomogeneity.

4. Results

4.1. Uniform confinement

For the case of uniform confinement, we consider systems with high (rs = 1.52a0) and low
average density (rs = 4.31a0), containing N = 40 and 2 electrons in the unit cell respectively.
The most strongly confined densities are obtained with vmax

0 = 274ε0
F and 2016ε0

F for the
high and low density systems respectively. Shown in figure 1 are the densities obtained when
v0 = vmax

0 .
XC energy differences for the LDA and GGA relative to the WDA, �ELDA,GGA

XC /N =
(ELDA,GGA

XC − EWDA
XC )/N , are given in table 1, for the high density case, and table 2, for the
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Figure 2. Exchange–correlation potentials vXC(r) taken through the centre of uniformly confined
densities, with (a) vq = 41ε0

F and (b) vq = 303ε0
F.

Table 2. The total exchange–correlation energy EWDA
XC /N , and the difference relative to the LDA

and the GGA for the uniformly confined system with rs = 4.31a0.

vq/ε0
F EWDA

XC /N �ELDA
XC /N �EGGA

XC /N

2.0 −0.3321 +0.0336 (+10%) +0.0230 (+7%)

20 −0.4042 +0.0452 (+11%) +0.0305 (+8%)

101 −0.6155 +0.0740 (+11%) +0.0455 (+7%)

303 −0.7789 +0.0935 (+12%) +0.0534 (+7%)

2016 −0.8831 +0.1053 (+12%) +0.0581 (+7%)

low density system, for a range of v0. In the high density case, �ELDA
XC /N changes sign from

negative to positive on going to the more strongly confined densities, and vanishes near the
middle of the density range. In contrast, the GGA differences are all negative, and actually
become smaller as v0 increases. So for moderate to high values of v0, the WDA lies between the
LDA and the GGA energies. At low density, although the energy differences are significantly
greater than in the high density case, they do not appear to be affected by the change in
inhomogeneity, since the deviations are remarkably constant for both functionals. Although
they may be purely coincidental, the differences may be a result of self-interaction errors
within the LDA and GGA which become more predominant in low density systems. XC
energy density differences between the LDA and the WDA do not bear any resemblance to the
Laplacian of the density in the uniformly confined densities studied here.

Examples of the XC potential for each functional are given in figure 2 in the high and low
density systems. The LDA and GGA potentials are largely indistinguishable for both cases.
At high density, the WDA potential is similar to the (semi)local functionals when the density
is large; however, there is a substantial difference in the tail regions of the density, where
the WDA decays substantially more slowly due to its −1/(2r) behaviour, compared with the
faster exponential decay of the LDA and GGA potentials. In the low density case, the WDA
potential is also deeper around the density maximum.

4.2. Non-uniform confinement

Now we consider the effect of non-uniform confinement on systems with average density
rs = 2a0 and 4.3a0 containing N = 20 and 2 electrons respectively; examples of the full range
of density distributions are shown in figure 3. In figure 4 we present differences in the total XC
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Figure 3. Examples of the non-uniform densities obtained for (a) the rs = 2a0 system, ranging from
the most weakly confined (FWHM = 0.741λ0

F ) to the most strongly confined (FWHM = 0.152λ0
F ),

and similarly for (b) the rs = 4.3a0 system. The distance along the direction of inhomogeneity r
is given in terms of the Fermi wavelength λ0

F = 2π/k0
F.
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Figure 4. Total XC energy differences per electron �EXC/N relative to the WDA for the LDA
(circles) and GGA (boxes) at (a) rs = 2a0 and (b) rs = 4.3a0, as a function of the FWHM of the
non-uniform density profiles. The shaded data points correspond to the densities shown in figure 2.

energy per electron relative to the WDA for the LDA (�ELDA
XC /N) and the GGA (�EGGA

XC /N)
for a range of density profiles. In the rs = 2a0 system, shown in figure 4(a), the LDA and
GGA deviations are positive for small and intermediate confinements, with the GGA in closer
agreement with the WDA. As the confinement gets stronger, the GGA differences are almost
constant whereas for the LDA they steadily increase, reaching a maximum when the FWHM
is ∼0.25λ0

F. For stronger confinement, the differences become negative and start to diverge
for both functionals; however, the GGA diverges faster than the LDA. The same divergent
behaviour is observed in the low density case given in figure 4(b), except that the densities
are more strongly confined on the scale of λ0

F, so the energy differences are much greater than
in the high density case. Self-interaction errors will also contribute to the differences. These
results are consistent with the findings of Kim et al [17] who found that the nonlocal ADA
gives very accurate energies in the strong 2D limit, whereas (semi)local functionals diverge to
minus infinity.

Analysing the XC energy density locally we find that the energy difference �eXC =
eLDA

XC −eWDA
XC , plotted along the line of inhomogeneity, bears little resemblance to the Laplacian

of the density ∇2n(r) for weak confinement (figure 5). However, for intermediately confined
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Figure 5. The XC energy density difference �eXC between the LDA and the WDA (a), and the
Laplacian of the density ∇2n(r) (b), along the direction of inhomogeneity for a non-uniformly
confined density with FWHM = 0.741λ0

F.
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Figure 6. The same as in figure 5, but with FWHM = 0.227λ0
F .
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Figure 7. The same as in figure 5, but with FWHM = 0.053λ0
F .

densities, �eXC and ∇2n(r) are strikingly similar, as shown in figure 6. When the density is
strongly confined, �eXC becomes large and negative near the density maximum in comparison
to ∇2n(r) (see figure 7). This last result is in accordance with the work of Garcia-Gonzalez [27]
who showed that eLDA

XC → −∞ when the dimensionality of an electron gas changes from 3D
to 2D.
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Figure 8. Exchange–correlation potentials vXC(r) along the direction of inhomogeneity for a
density with FWHM = 0.068λ0

F .

LDA WDA

(a) (b)

Figure 9. Exchange–correlation holes nXC(r, r′) surrounding an electron at the density maximum
for the non-uniformly confined density with FWHM = 0.741λ0

F , obtained using (a) the LDA and
(b) the WDA.

The WDA XC potential in the non-uniform case is vastly different from the LDA and GGA
XC potentials in the strongly confined regime, which again only exhibit small differences from
each other. This is clearly shown in figure 8 for a density with FWHM = 0.068λF. It should
be noted that the wiggles in the GGA potential at positions of low density are a consequence of
the parametrization used to construct FGGA

XC [28], although the LDA exhibits the same spurious
behaviour. The much shallower and more slowly decaying potential exhibited by the WDA
may have important implications for the description of subband energy levels in real quasi-2D
systems such as inversion and accumulation layers in metal–oxide–semiconductor systems,
which from a modelling viewpoint are similar to the strongly confined densities examined here.
The LDA is known to overestimate these levels in comparison to experiment [29, 30], and a
shallower potential like that obtained with the WDA is likely to provide an improvement.

Finally, we compare XC holes nXC(r, r′) using the LDA and the WDA, when an electron
is located at the density maximum. When the density is sufficiently slowly varying, the
WDA hole is almost exactly spherical; consequently the LDA is in very good agreement
as shown in figure 9. However, as the confinement gets stronger, the WDA hole becomes
increasingly anisotropic as it contracts in the direction of density inhomogeneity. Since the
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(a) (b)

Figure 10. The same as in figure 9, but for a density with FWHM = 0.152λ0
F .

LDA hole depends on the local density, which in this case is the value at the peak in the
density profile, the LDA hole remains spherical and continues to get deeper relative to the
WDA as the confinement, and hence the local density at the maximum, increases (shown in
figure 10). This accounts for the divergent nature of the LDA energy densities, since εXC is
directly related to the on-top hole density nXC(r, r) through relation (2). Although GGA holes
cannot be calculated, a similar explanation for the divergence of the GGA energies can be
given as follows: the major contribution to the XC energy in the strongly confined regime is
from exchange; this is reflected by the correlation enhancement factor FGGA

C which turns off
for values of s ∼> 4. So we need only consider the form of FGGA

X . Now, the cut-off radius
in real space for the numerical GGA exchange hole reduces as s → ∞ (see figure 2 of [23]);
consequently the hole becomes highly localized around the electron, and the on-top value gets
deeper (more negative) because of the XC sum rule. As a result, FGGA

X � 1 for all sNote 1

which causes the GGA energies to be lower than in the LDA. This adds to the LDA divergence
and accounts for why the GGA is worse than the LDA for strong confinement. In contrast, the
nonlocal dependence on the density in the WDA allows its XC hole to distort and spread along
the ridge of the density profile, resulting in shallower holes and XC energy densities that tend to
finite values in the strongly confined limit. A striking example of this anisotropy is illustrated
in figure 11 for the most strongly confined density (on the scale of λ0

F) in this study. It is clear
that the WDA hole correctly takes on the same quasi-2D character as the density profile shown
in figure 2(b). The WDA hole can also be highly nonlocal in this system. When the electron
moves parallel to the direction of inhomogeneity, into the low density region midway between
density peaks, the hole stays located at the density maximum completely delocalized from the
electron.

We have made attempts to counteract the GGA divergence, whilst maintaining its
properties for conventional systems, by modifying FGGA

X such that it becomes increasingly
negative for s � 4. We find that it is impossible to collectively improve total XC energies
relative to the WDA at all confinement strengths shown in figure 4(b). Present meta-GGA
functionals [31] which include additional semilocal information beyond the GGA level are
also unable to rectify the divergence [32]. In fact Kim et al found that they worsen the
performance of the GGA.

1 The exchange enhancement factor for the PW91 GGA becomes less than 0 for s greater than ∼8. Consequently
PW91 is a slight improvement on the PBE-GGA in strong confinement.
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WDA

Figure 11. The exchange–correlation hole obtained using the WDA for the most strongly confined
density with FWHM = 0.051λ0

F .

5. Conclusions

We have analysed the performance of the nonlocal WDA for a range of density inhomogeneities
in the electron gas, that vary from weak to strong anisotropy, with different dimensional
characters. Total XC energies are very close to those of the (semi)local functionals, especially
in the high density, uniformly confined regime. This is encouraging for the WDA since this
is an environment that is known to be successfully described by (semi)local functionals, even
when the density is significantly localized. Substantial differences arise between the nonlocal
and (semi)local XC descriptions when the density is strongly confined in one dimension. With
regard to the XC potential, it is clear that the WDA description differs from the (semi)local
functionals in all of the density regimes examined; again the most prominent changes occur
for the non-uniform case. It is also interesting to note that the GGA only modifies the LDA
potential by a small amount in all cases considered.

The successful description of key XC quantities in the range of density inhomogeneities
examined here demonstrates the universal nature of the WDA. Consequently we hope that this
work will encourage greater interest in the WDA, both in its development and in applications.
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